Funzione dispari

Una funzione \(f \) si dice dispari se \(f(-x) = -f(x) \)

\[\begin{align*}
 f(x) &= -f(-x) \\
 f(-x) &= -f(x)
\end{align*} \]

OSS: Se \(f \) è dispari allora è simmetrica rispetto all'origine.

ES

\[
y = x^3 + x
\]

\[
\begin{align*}
 f(x) &= x^3 + x \\
 f(-x) &= (-x)^3 + (-x) = -x^3 - x \\
 -f(-x) &= x^3 + x
\end{align*}
\]

\[\Rightarrow f(x) = -f(-x) \]

Funzioni monotone

\[
y = f(x)
\]

\[
y = g(x)
\]

\[
V x_1, x_2 \in \mathbb{R} \text{ con } x_1 < x_2 \Rightarrow f(x_1) < f(x_2)
\]

\[\Rightarrow y = f(x) \in \text{MONOTONA CRESCENTE} \]

\[
\begin{align*}
 V x_1, x_2 \in \mathbb{R} \text{ con } x_3 < x_4 \Rightarrow g(x_3) > g(x_4)
\end{align*}
\]

\[\Rightarrow y = g(x) \in \text{MONOTONA DECREScente} \]

ES

\[
f(x) = \begin{cases}
 2 & \text{per } x \leq 1 \\
 1 & \text{per } x > 1
\end{cases}
\]
Def: Una funzione f si dice **limitata superiormente** se il suo codominio è un insieme limitato superiormente, ovvero $\forall x \in \mathbb{R}$ tale che $x \in \Delta_f$ esiste K tale che $f(x) \leq K$.

ES

![Diagramma](image)

Def: Una funzione f si dice **limitata inferiormente** se il suo codominio è un insieme limitato inferiormente, ovvero $\exists h \in \mathbb{R}$ tale che $f(x) \geq h$.

ES

![Diagramma](image)
Def: Una funzione f si dice **periodica** di periodo T se $\forall x \in D_f, f(x) = f(x+T)$ con $x+T \in D_f$.

ES: $f: \mathbb{R} \to \mathbb{R}$

$f(x) = \begin{cases} x & \text{per } x \in [0;1] \\ -x & \text{per } x \in [-1;0] \end{cases}$

con $T = 2$